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Abstract:

Using high-quality dataset from 12 flux towers in north China, the performance of four evapotranspiration (ET) models and the
multi-model ensemble approaches including the simple averaging (SA) and Bayesian model average (BMA) were systematically
evaluated in this study. The four models were the single-layer Penman–Monteith (P–M) model, the two-layer Shuttleworthe–
Wallace (S–W) model, the advection–aridity (A–A) model, and a modified Priestley–Taylor (PT-JPL). Based on the mean value
of Taylor skill (S) and the regression slope between measured and simulated ET values across all sites, the order of overall
performance of the individual models from the best to the worst were: S–W (0.88, 0.87), PT-JPL (0.80, 1.17), P–M (0.63, 1.73)
and A–A (0.60, 1.68) [statistics stated as (Taylor skill, regression slope)]. Here, all models used the same values of parameters,
LAI and fractional vegetation cover as well as the forcing meteorological data. Thus, the differences in model performance were
mainly attributed to errors in model structure. To the ensemble approach, the BMA method has the advantage of generating more
skillful and reliable predictions than the SA scheme. However, successful implementation of BMA requires accurate estimates of
its parameters, and some degradation in performance were observed when the BMA parameters generated from the training
period were used for the validation period. Thus, it is necessary to explore the seasonal variations of the BMA parameters
according the different growth stages. Finally, the optimal conditional density function of half-hourly ET approximated well by
the double-exponential distribution. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

Terrestrial evapotranspiration (ET) is a phase transition of
water from liquid (or ice) to gas (Wang and Dickinson,
2012). This process serves as one of the main components
of the hydrological cycle, accounting for ~60% of
terrestrial precipitation (Shiklomanov, 1998). The latent
heat (λET) accompanying ET is particularly effective in
cooling the land surface (Katul et al., 2012), thus critical
in atmospheric processes and biogeochemical cycles
(Teuling et al., 2010; Jung et al., 2010; Mu et al.,
2011; Sheffield et al., 2012). Therefore, accurately
estimating and measuring ET (or λET) are of the long-
term interest to hydrologists (Xu and Singh, 2005), climate
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modellers (Seneviratne et al., 2010), ecologists (Fisher
et al., 2011), and agriculturalists (Zhu et al., 2014a).
The development of instrumentation for measuring

scalar fluxes and vertical wind in the 1970s led to the
development of the eddy covariance (EC) technique
(Baldocchi et al., 2001; Wilson et al., 2002). To date, the
technique is the key measurement tool used by several
large observational projects, such as the FLUXNET
(Baldocchi et al., 2001), the Integrated Carbon
Observation System in Europe (www.icos-infrastructure.
eu), and the Coordinated Enhanced Observation Project
(CEOP) in the arid and semi-arid regions of northern
China (Yao et al., 2013). These projects provide a high-
quality and valuable dataset of surface hydrological and
meteorological variables across a wide range of biomes
and climate conditions (Wang and Dickinson, 2012). On
the other hand, a number of models have been developed
for estimating ET since the 1950s. These models vary in
degrees of complexity from the empirical equations using
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a single climatic variable to formulations based on the
conservation of either energy or mass, or both (Brutsaert,
2005). Among them, the renowned Penman–Monteith
(P–M) model (Monteith, 1965) is physically sound and
rigorous, and has been widely used in estimating ET.
However, the P–M model treats the land surface as one
homogeneous layer and cannot distinguish between the
plant transpiration and soil evaporation (Monteith, 1965);
the latter may be the main component of ET in arid region
because of low vegetation cover fraction. Shuttleworth
and Wallace (1985) extend the P–M model to the sparse
canopies, and developed a two-layer model (S–W) to
separately account for plant transpiration and soil
evaporation. However, these two ET models require
numerous parameters and proper determination of these
parameters is usually difficult (Zhu et al., 2013, 2014b),
thus limiting their applications (Wang and Dickinson,
2012). The complementary relationship (CR)
hypothesized by Bouchet (1963) provides an avenues
for estimating ET from only routine meteorological
variables without detailed knowledge of the surface
states. Brutsaert and Stricker (1979) first put Bouchet’s
hypothesis into practice in their advection–aridity (A–A)
model, which has been applied at hourly (Parlange and
Katul, 1992), daily, and monthly time steps (Brutsaert and
Stricker, 1979). Finally, Priestley and Taylor (1972)
proposed a radiation-based model for equilibrium ET
under conditions of unlimited soil moisture supply. To
scale-down the equilibrium ET to actual ET, Fisher et al.
(2008) presented a novel mode (PT-JPL) based on bio-
physiological constraints and soil evaporation
partitioning. The PT-JPL is attractive for its simplicity
and potential to obtain regional or global ET using
satellite data (Mu et al., 2007).
Nevertheless, there are still some insufficiencies and

limitations in the applying these models. First, most
previous studies have focused either on intercomparison
of different models over single (or a few) locations
(Stannard, 1993; Fisher et al., 2005, 2009; Zhang et al.,
2008; Gharsallah et al., 2013; Zhu et al., 2013, 2014b), or
on evaluating a specific model over different land
surfaces (Fisher et al., 2008; García et al., 2013). As far
as we know, systemic intercomparison and evaluation of
different models over a wide range of biomes and climatic
conditions are relatively few with the exception of
Ershadi et al. (2014), who evaluated the performance of
multiple ET models based on dataset from 20 FLUXNET
sites. However, only three of the 20 sites included
semiarid and arid vegetation with annual precipitation
below 400mm (Ershadi et al., 2014). Hence, the
performances of the ET models over semiarid and arid
climatic conditions remain uncertain. Second, the
traditional approach to ET prediction is to postulate a
model structure and assume the mismatches between
Copyright © 2016 John Wiley & Sons, Ltd.
observed and simulated values are solely attributed to
parameter uncertainties (Vrugt and Robinson, 2007). To
date, numerous studies have focused on obtaining good
matches between observed and simulated ET by locally
calibrating the model parameters (i. e. Ortega-Farias
et al., 2004, 2006; Shi et al., 2008; Hu et al., 2009;
Doody et al., 2011; Zhu et al., 2013, 2014b). However,
this procedure does not take the structural error of the
model into consideration, and also limits the utility of the
model to those specific locations (Ershadi et al., 2014).
Thus, much attention should be paid in identifying and
diagnosing the model structure errors by intercomparing
the performances of different models with a set of fixed
parameters for similar biomes. Third, aiming to extract as
much information as possible from the existing models,
the multi-model ensemble approaches have become
popular in reliable prediction and uncertainty analysis
(Raftery et al., 2005; Ajami et al., 2007; Duan et al.,
2007; Vrugt and Robinson, 2007). Recently, Ershadi
et al. (2014) showed that even the simple averaging (SA)
method performed better than any individual model in
estimating ET across the 20 selected FLUXNET sites.
Also, the Bayesian model averaging (BMA) approach has
been used to merge a range of satellite-based models for
regional/global ET estimations (Vinukollu et al., 2011;
Mueller et al., 2011; Yao et al., 2014; Chen et al., 2015).
The results indicated that the BMA method can generally
outperforms the best individual model, and provides a
useful tool for generating a long-term regional/global
terrestrial ET product (Yao et al., 2014; Chen et al.,
2015). However, the success of the BMA method
depends on the skill and performance of the individual
members of the ensemble (Vrugt and Robinson, 2007). In
some instances, the forecast error of the BMA approach
was of similar magnitude as the forecast error of the best
model in the ensemble (Georgekakos et al., 2004; Vrugt
and Robinson, 2007). Thus, systematic evaluation of the
performance of the BMA method for ET models varying
in structural complexity is urgently needed over various
biomes and climates. In addition, the normal conditional
density function was commonly used in practice when
merging the multiple ET products (Yao et al., 2014; Chen
et al., 2015). As ET is a complicated variable coupling
budgets of energy, hydrology, and carbon (Yao et al.,
2014), another avenue of research is to develop
appropriate structures for errors in ET.
Using a collection of high-quality tower based data

from the CEOP experiments across north China over the
main growing seasons (from July to September) of two
years, the objectives of the present study were to: (1)
evaluate the performance of the widely-used models in
estimating actual ET over different biomes and climatic
conditions; (2) identify and diagnose the model structure
errors of the selected models by using a set of fixed
Hydrol. Process. 30, 2861–2879 (2016)
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parameters for similar biomes; and (3) evaluate the BMA
method by comparison with SA method and the
individual ET models to generate possible improvements
of the BMA method for estimating ET.
DATA AND METHODOLOGY

Observations from eddy covariance flux towers

To evaluate the performance of ET models and the
multi-model ensemble approaches, we used the ground-
observed data from 12 flux towers (Figure 1), which were
set up under the CEOP in the arid and semi-arid regions of
northern China (http://observation.tea.ac.cn/). The climate
at the flux tower locations varies from semi-humid to arid
with associated variations in vegetation (i.e. grassland and
cropland, which are the major land-surface biomes in north
China) (Table I). These datasets include rainfall
(TE525MM, Campbell Scientific Instruments Inc.), air
temperature, relative humidity (HMP45C, Vaisala Inc.,
Helsinki, Finland), wind speed/direction (034B, Met One
Instruments Inc., USA), downward and upward solar and
longwave radiation (PSP, The EPPLEY Laboratory Inc.,
USA), soil temperature (Campbell-107, Campbell
Scientific Instruments Inc.) and moisture (CS616,
Campbell Scientific Instruments Inc.) profiles at depths
Figure 1. Location of the eddy covariance towers used to provid

Copyright © 2016 John Wiley & Sons, Ltd.
of 0.02, 0.04, 0.1, 0.2, 0.4, 0.8, 1.2, and 1.6m, and surface
soil heat flux (HFT3, Campbell Scientific Instruments
Inc.). All turbulent flux observations were measured by the
EC method. Data gaps because of instrument malfunction,
power failure, and badweather conditions were filled using
artificial neural network (ANN) and mean diurnal
variations (MDV) methods (Falge et al., 2001). The
energy closure which may be affected by many factors is
still a key indicator to assess the quality of flux data
(Drexler et al., 2004). Liu et al. (2011) examined the
energy closure at different sites of the CEOP sites. About
85% of the energy balance closure was found in EC data,
indicating the measurements are reasonable.
Remote sensing based measurements

The 16-day MODIS NDVI (MOD13Q1) product
(Solano et al., 2010) with 250-m spatial resolution was
extracted at each tower location from the Simple Object
Access Protocol (SOAP) web service site (http://daac.
ornl.gov/MODIS/). The 16-day gaps between successive
NDVI records were temporally interpolated using linear
interpolation. The leaf area index (LAI) and fractional
vegetation cover were calculated from the NDVI data
using the method described by Jiménez-Muňoz et al.
(2009) and Ershadi et al. (2014), respectively. All ET
e forcing and validation data in this study across north China

Hydrol. Process. 30, 2861–2879 (2016)
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Copyright © 2016 John Wiley & Sons, Ltd.
models use the same values of LAI and fractional
vegetation cover for their parameterization.

Model descriptions

P–M model. The P–M model can be formulated as
(Monteith, 1965):

λET ¼ Δ Rn � Gð Þ þ ρCpD=ra
Δþ γ 1þ rs=rað Þ (1)

where λ is the latent heat of evaporation (J kg�1); Δ is the
slope of the saturation water vapour pressure curve
(PaK�1); ρ is the density of the air (kgm�3); Cp is the
specific heat capacity of dry air at constant pressure
(J kg�1 K�1); D is the water vapour pressure deficit (kPa);
γ is the psychrometric constant (kPa K�1); ra is the
aerodynamic resistance (s m�1); and rc is the surface
canopy resistance (sm�1).
The aerodynamic resistance ra is usually computed

with the following equation, assuming neutral stability
conditions (Brutsaert, 1982):

ra ¼ 1

k2uz
ln

z� d
hc � d

� �
ln

z� d
z0

� �
(2)

where hc is the mean vegetation height (m), z is the height
of wind speed measurements (m), d is the zero plane
displacement (m) estimated as d = 0.67hc, z0, the
roughness length for momentum transfer (m), is estimated
by z0 = 0.123hc, k is the von Karman’s constant (k=0.41),
and uz is wind speed at the reference height (m s�1).
The canopy resistance rs can be calculated using the

Jarvis-type model (Jarvis, 1976):

rs ¼ rsmin

LAI∏
i
Fi X ið Þ (3)

where rsmin represents the minimal stomatal resistance of
individual leaves under optimal conditions. The value of
rsmin was acquired based on the vegetation lookup tables
used in the Simple Biosphere model (i.e. rsmin is equal to
30sm�1 for crops and 60sm�1 for grasslands; Dorman and
Sellers, 1989). Fi(Xi) is the stress function of a specific
environmental variable Xi, with 0≤Fi(Xi)≤1. Following
Chen and Dudhia (2001), the stress functions were
expressed as:

F1 Rnð Þ ¼ rsmin=rsmax þ f
1þ f

with

f ¼ 0:55
Rg

Rgl

2
LAI

(4)

F2 T að Þ ¼ 1� 0:0016 298� Tað Þ2 (5)
Hydrol. Process. 30, 2861–2879 (2016)
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F3 Dð Þ ¼ 1� gD (6)

F4 θð Þ ¼
1 θ > θcr
θ � θwp
� �
θcr � θwp
� � θwp≤θ≤θcr

0 θ < θwp

8>><
>>: (7)

where rsmax is the maximum canopy resistance set equal
to 5000sm�1 (Chen and Dudhia, 2001); Rgl is the
species-dependent threshold value of solar radiation for
transpiration (Wm�2), which is equal to 100Wm�2 for
crops and grasslands; Rg is the incident solar radiation
(Wm�2); Ta is the air temperature (K) at the reference
height; g is a parameter associated with the water vapour
deficit D (kPa), set equal to 0.0025 kPa�1 (Noilhan and
Planton, 1989); θ is the actual volumetric soil water
content in the root-zone (m3m�3); θwp is water content at
the wilting point (m3m�3); and θcr is the critical water
content (m3m�3) at which plant stress starts set, taken as
0.75θsat. θsat is the saturated soil water content (m3m�3),
which was estimated empirically through the near-surface
soil texture.

Two-layers Shuttleworthe–Wallace (S–W) model. The
S–W model (Shuttleworth and Wallace, 1985) combined
two P–M type equations for plant transpiration and soil
evaporation. The S–W model is expressed as follows:

λET ¼ λE þ λT ¼ CsETs þ CcETc (8)

ETs ¼
ΔAþ ρCpD� Δrsa A� Asð Þ� �

= raa þ rsa
� �

Δþ γ 1þ rss= raa þ rsa
� �� � (9)

ETc ¼
ΔAþ ρCpD� ΔrcaAs

� �
= raa þ rca
� �

Δþ γ 1þ rcs= raa þ rca
� �� � (10)

Cs ¼ 1
1þ RsRa=Rc Rs þ Rað Þ½ � (11)

Cc ¼ 1
1þ RcRa=Rs Rc þ Rað Þ½ � (12)

Ra ¼ Δþ γð Þraa (13)

Rc ¼ Δþ γð Þrca þ γrcs (14)

Rs ¼ Δþ γð Þrsa þ γrss (15)

where ETs and ETc are terms to describe evaporation
from soil and transpiration from the plant (Wm�2),
respectively; Cs and Cc are soil surface resistance and
canopy resistance coefficients (dimensionless),
respectively; rcs and rss are the surface resistance for plant
canopy and soil surface (sm�1), respectively; rca and r

s
a are

aerodynamic resistances from the leaf to canopy height
and soil surface to canopy height (sm�1), and raa is
Copyright © 2016 John Wiley & Sons, Ltd.
aerodynamic resistances from canopy height to reference
height (sm�1). A and As (Wm�2) are the available energy
input above the canopy and above the soil surface,
respectively, and are calculated as:

A ¼ Rn � G (16)

As ¼ Rns � G (17)

where Rn and Rns are net radiation fluxes into the canopy
and the substrate (Wm�2), respectively; G is the soil heat
flux (Wm�2). Rns was calculated using a Beer’s law
relationship of the form:

Rns ¼ Rnexp �KALAIð Þ (18)

in which KA is the extinction coefficient of light
attenuation, and set 0.60 for fully grown plant (Sene,
1994).
The soil surface resistance rss is interpreted as the

resistance from the water vapour to diffuse through the
top layer of the soil. It can be expressed as a function of
the top layer (0- to 5-cm) of soil water content (Sellers
et al., 1992; Zhu et al., 2013):

rss ¼ exp 8:206� 4:255
θs
θsat

� �
(19)

in which θs is soil water content in the top layer. The
canopy resistance rcs was calculated following Equation 3,
while the three aerodynamic resistance (i.e. raa, r

c
a, and rsa)

were computed as reported by Shuttleworth and Wallace
(1985) and Shuttleworth and Gurney (1990).

Modified Priestley–Taylor (PT-JPL) model. The
Priestley–Taylor (Priestley and Taylor, 1972) model is a
simplified but surprising successful form of the P–M
model. This model was introduced to estimate potential
ET from an extensive wet surface in conditions of
minimal advection (Stannard, 1993; Sumner and Jacobs,
2005), and is expressed as:

λET ¼ αPT
Δ

Δþ γ
Rn � Gð Þ (20)

where αPT is a unitless coefficient. For well-water surface,
the value of αPT has theoretical significance and was
estimated to be 1.26 (Priestley and Taylor, 1972). Scaling
of the Priestley–Taylor potential ET to actual ET has been
performed by modification of αPT as a function of the
environmental variables (Flint and Childs, 1991). Here,
we used the modified form of the Priestley–Taylor model
developed by Fisher et al. (2008) (hereafter PT-JPL
model). In this model, total ET is partitioned into soil
evaporation (λEs), wet canopy evaporation (λEwc), and
canopy transpiration (λTc) and are defined as:
Hydrol. Process. 30, 2861–2879 (2016)
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λEs ¼ ks�αPT
Δ

Δþ γ
Rns � Gð Þ (21)

λEwc ¼ kwc�αPT
Δ

Δþ γ
Rnc (22)

λTc ¼ kc�αPT
Δ

Δþ γ
Rnc (23)

where Rns is the net radiation for soil (Wm�2) given by
Equation 18; Rnc is the net radiation for canopy (Wm�2),
Rnc=Rn�Rns; ks, kwc, and kc are reduction functions for
scaling of potential ET in each of soil, wet canopy
surface, and canopy to their actual values, and defined as:

ks ¼ f wet þ f SM 1� f wetð Þ (24)

kwc ¼ f wet (25)

kc ¼ 1� f wetð Þf gf T f M (26)

where fwet is relative surface wetness (RH4); fSM is a soil
moisture constraint (RHD/β); fg is green canopy fraction
(fAPAR/fIPAR); fT is a plant temperature constraint (exp
[�((Ta�Topt)/Topt)2]); fM is a pant moisture constraint
(fAPAR/fAPARmax). RH represents relative humidity (%), β
is soil moisture constraint parameter, and β =1 kPa was
used in the original model (Fisher et al., 2008), Topt is
the optimum plant growth temperature (298K; García
et al., 2013), and fAPAR and fIPAR are fraction of
photosynthetically active radiation (PAR) that is
absorbed and intercepted by vegetation cover,
respectively, and are calculated as reported by Ershadi
et al. (2014).

A–A model. The A–A model was first proposed by
Brutsaert and Stricker (1979) and further improved by
Parlange and Katul (1992). They are based on Bouchet’s
(1963) CR hypothesis that actual (λET) and potential ET
(λETp; W m�2) should converge to wet surface ET
(λETw; W m�2) at wet surface conditions. As an initially
wet surface dries, λET and λETp derive from λETw with
opposite changes in flux. Its general form is:

λET ¼ bþ 1
b

� �
λETw � λETp

b
(27)

λETw ¼ αPT
Δ

Δþ γ
Rn � Gð Þ (28)

λETp ¼ Δ
Δþ γ

Rn � Gð Þ þ γ
Δþ γ

ρ q*� qð Þ
ra

(29)

where b is the proportionality constant and is equal to 1 in
the A–A model; αPT is the Priestley–Taylor coefficient,
Copyright © 2016 John Wiley & Sons, Ltd.
considered here as 1.26 (Priestley and Taylor, 1972); q*
and q are the saturation-specific humidity at air
temperature and the specific humidity of the atmosphere
(kgkg�1), respectively; ra is the aerodynamic resistance
(sm�1) and its formula in similar to that used for the P–M
model.

BMA

BMA was proposed by Raftery et al. (2005) as a
statistical probabilistic scheme for model combination. To
explicate the BMA method, let y denotes the quantity to
be forested,D ¼ yobs1 ; yobs2 ;⋯; yobsT

� �
to be the training data

with length T, and f= [f1, f2,⋯, fk] the ensemble of
predictions obtained from k different models (i.e. k=4
in this study). The pi(y|fi,D) (i=1, 2,⋯, k) is the posterior
distribution of y given model predication fi and
observational data set D. According to the law of total
probability, the posterior distribution of the BMA
predication of y can be expressed as (Raftery et al.,
1997, 2005):

p yjDð Þ ¼ ∑
k

i¼1
p f i Dj Þpi y f i;Dj Þðð (30)

where p(fi|D) is the posterior probability of forecast fi
being the best one given the observational data D. If we
denote wi= p(fi|D), we should obtain ∑

k

i¼1
wi ¼ 1 . One

premise of the BMA scheme is that the weights (wi)
should reflect relative model performance as they are the
probabilistic likelihood measures of a model being correct
given the observational data D (Duan et al., 2007).
Supposing that pi(y|fi,D) to be Gaussian distribution
centred at a linear function of the original forecast ai+bifi
(where ai and bi are bias correction terms that are derived
by simple linear regression of y on f for each of the
individual ensemble members from the training data) with
standard deviation σi, the posterior mean and variance of
the BMA predication for variable y are:

E½yjD� ¼ ∑
k

i¼1
pðf ijDÞ·E½pi yjf i;Dð Þ�

¼ ∑
k

i¼1
wi ai þ bif ið Þ (31)

Var½yjD� ¼ ∑
k

i¼1
wiðai þ bif i � ∑

k

i¼1
wi ai þ bif ið ÞÞ2

þ∑
k

i¼1
wiσ2i

: (32)

In essence, BMA prediction [Equation 31] is the
average of individual predictions, and it receives higher
weighting from better performing models; Variance of
BMA prediction [Equation 32] consists of two terms, the
Hydrol. Process. 30, 2861–2879 (2016)
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first representing the between-model-variance and the
second representing the within-model-variance.
Successful implementation of the BMA method

requires specification of wi and σ2i (i=1, 2,⋯, k) on the
basis of training observat ional data D . Let
θ ¼ wi; σ2i ; i ¼ 1; 2;⋯; k

� 	
, the log-likelihood function

of Equation 30 can be approximated as:

ℓ θð Þ ¼ ∑
T

t¼1
logð∑

k

i¼1
wi·pi ytjf i;t;D

� �Þ: (33)

Because of its high dimensionality of this problem, it
is hard to obtain analytical solution of θ. In this study,
the Expectation–Maximization (EM) algorithm was used
to search the optimal value of θ (Raftery et al., 2003). In
brief, the EM algorithm casts the maximum likelihood
problem as a ‘missing data’ problem. The missing data
Zi,t has value 1 if the i th model ensemble is the best
prediction at time t and value 0 otherwise. Hence, at any
time t, only one of {Z1,t,Z2,t,⋯Zk,t} is equal to 1, and
the rest are zeros. The EM algorithm starts with an
initial guess for θ, and then alternates between the
expectation step, which estimates Zi,t on the current
value of θ, and the maximization step, where new value
of θ is estimated given the current value of Zi,t. The
expectation and maximization steps are repeated
continually until certain convergence criteria are
satisfied. The detailed description of the EM algorithm
is given in Supporting Information A. In this study, the
half-hourly EC-measured λET data from each of the 17
flux towers in 2008 was used for BMA training,
whereas data set in 2009 was used to evaluate the
performance of the BMA method during an independent
validation period.
In addition, a SA method to merge the four ET model

estimates (with equal weights) was included to develop an
overall evaluation of performance, which can be
expressed as:

λETSA ¼ 1
K
∑
K

i¼1
λETi (34)

where λETSA and λETi are half-hourly actual ET
predicted using the SA method and each individual ET
model (Wm�2), respectively.

Analysis of model-data mismatch

The model performance was quantified using
statistical analysis based on half-hourly λET for each
model-data pair. Model-data mismatch was evaluated
using the coefficient of determination (R2), slope, y-
intercept, bias, root-mean-square error (RMSE), relative
error (RE), and the Nash–Sutcliffe efficiency coefficient
Copyright © 2016 John Wiley & Sons, Ltd.
(NSE) (Legates and McCabe, 1999). The skills were
calculated as:

Bias ¼
∑
n

t¼1
O tð Þ �M tð Þð Þ

n
(35)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

t¼1
O tð Þ �M tð Þ½ �2

s
(36)

RE ¼ RMSE

O
(37)

NSE ¼ 1�
∑
n

t¼1
O tð Þ �M tð Þ½ �2

∑
n

t¼1
O tð Þ � O
� �2 (38)

where n is the total number of observations; O(t) is the
observed values at time t, Ō is the mean of the observed
data, and M(t) is the simulated λET value at time t. NSE
indicates how well the scatter plot observed versus
simulated data fits the 1:1 line and ranges between �∞
to 1, with a NSE=1 being the optimal value.
A final characterization of model performance uses the

Taylor diagram (Taylor, 2001), in which a single point
indicate the coefficient of determination (R), the ratio of
the standard deviations between the simulation and the
observation (σnorm =σm/σo, where σm and σo are the
standard deviations of simulation and observation,
respectively) and the root-mean-square difference of the
two patterns on a two-dimensional plot. More generally,
each point of the Taylor diagram for any arbitrary data
group can be scored as:

S ¼ 2 1þ Rð Þ
σnorm þ 1=σnormð Þ2 (39)

where S is the model skill metric bound by zero and unity
where unity indicates perfect agreement with
observations.
RESULTS

Performance of four ET models over the entire data period

Comparisons between observed and simulated half-
hourly λET in Table II and Figure 2 provided an overview
of performances among the four ET models over the
entirety of the available period of data collected for each
tower. Generally, the four models had a similar R range (i.
e. mostly ranging between 0.70 and 0.95; Figure 2), but
S–W and PT-JPL performed better than P–M and A–A
with σnorm closer to 1 (Figure 2), lower Bias, RMSE and
RE, and greater NSE (Table II). The diagram of Taylor
Hydrol. Process. 30, 2861–2879 (2016)
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skill provided further statistical details on the model
performances (Figure 3). The values of Taylor skill (S) for
the S–W model over all towers showed a very narrow
range between 0.69 and 0.95 with a mean of 0.88
(Figure 3a), which indicated that S–W model has a good
overall performance. The second good model is PT-JPL
model, and the values of S varied between 0.52 and 0.96
with a mean of 0.80 (Figure 3a). Among the models, the
performance of the P–M model is ranked third (i.e. S
ranging from 0.35 to 0.84 with a mean of 0.63; Figure 3
a), while the A–A model exhibited a relative large
variation in S values ranging from 0.16 to 0.88 with a
mean of 0.61 (Figure 3a). Further statistical details on the
performance of the models are provided as scatter plots
and summary tables in the Supporting Information B.
As expected, the model performances showed a high

degree of site-specific variation. Generally, the model
performances were satisfactory over croplands with the
mean S values ranging from 0.72 to 0.89 (Figure 3b).
However, except for the two alpine grasslands on
Qinghai–Tibetan plateau (i.e. Maqu and Arou), the models
have lower performances over the other four arid/semiarid
grasslands (Figure 3b), which was mainly attributed to the
significant overestimations of λET by the P–M and A–A
models with σnorm>1.5 and slopes>2 (Figure 2 and
Supporting Information B). The relationship between soil
moisture and ET fraction (EF= λET/λETpotential; where
λETpotential was potential daily ET which was calculated by
setting rs=0 s m�1 in Equation 1; W m�2) over the
grasslands was presented to distinguish the soil moisture-
limited and energy-limited ET regimes (Figure 4). Soil
moisture in two alpine grasslands on Qinghai–Tibetan
plateau was maintained at a relatively high level (>25%),
and EF was independent of the soil moisture content. In
contrast, soil moisture in arid/semiarid grasslands mainly
lied in a transitional regime (i.e. 4–25%), and EF was a
linear function of soil moisture content (Figure 4),
confirming that ET over these ecosystems are mainly
constrained by soil moisture supply (Seneviratne et al.,
2010). Thus, it seems to be challenges for the P–M and A–
A models to accurately estimate λET over soil moisture-
limited ecosystems in arid/semi-arid regions, where errors
may attribute to the heterogeneous land surface conditions
(i.e. low LAI; data not show) or the soil moisture stress on
ET processes (discussed below).
Testing the BMA scheme using the data from training
period

The BMA scheme was applied to obtain a set of BMA
weights for each site using the measured half-hourly λET
data from the training period (2008year). The weights for
the four ET models across all sites are shown in Figure 5,
from which we can visually notice that the BMA weights
Hydrol. Process. 30, 2861–2879 (2016)



Figure 2. Performance of the four individual ET models for the 12 selected tower sites (number 1–12). Statistics in the Taylor diagram are derived from
simulated and observed half-hourly λET fluxes during two year periods. An ideal model would have a standard deviation ratio (σnorm) of 1.0 and a

correlation coefficient of 1.0 (Obs, the reference point)
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roughly reflects the individual model performance at each
site. For examples, S–W ranked first in RE and NSE
performances for arid/semiarid grasslands in the training
period (Table S1 in Supporting Information B), and
gained the highest weight ranging from 0.38 to 0.42; PT-
LPJ performed best for two alpine grasslands on Qinghai–
Tibetan plateau and has the highest weight (i.e. 0.32 and
0.31 for Arou and Maqu, respectively). In addition, the
relative contributions of the four ET models varied for
different sites. For examples, the A–A model weights for
arid/semiarid grasslands (i.e. 0.11–0.15) were lower than
that for crops (i.e. 0.18–0.21) and that for two alpine
grasslands on Qinghai–Tibetan plateau (i.e. 0.17 and 0.19
for Arou and Maqu, respectively). On the contrary, the S–
W model weights decrease from 0.38 to 0.42 for
arid/semiarid grasslands to 0.29–0.37 for crops and to
0.27 and 0.28 for Arou and Maqu, respectively. Thus, the
BMA weights did indeed reflect relative model
performance over different sites.
During the training period, estimates of half-hourly λET

calculated using the BMA method were compared with
those for the SA method and the individual ET models for
each site (Figure 6a and Supporting Information B). The
most prominent merit of the BMAmethod is its robustness
over all sites as indicated by a narrow variations in
regression slope (0.99–1.01) and σnorm (1.08–1.38) values.
If the mean values of model skill (S) for all towers were
Copyright © 2016 John Wiley & Sons, Ltd.
considered as measures of model performances, the BMA
method presented the best overall performance (Figure 6).
Notably, the predictive capabilities of the BMAmethod for
some sites (i.e. Dongsu, Miyun, Guantao, and Yingke)
were similar or not better than that of the best performing
model (S–W) in the ensemble members, as indicated by
relative larger σnorm, RMSE and RE, and lower NSE values
(Figure 6a and Table S1 in Supporting Information B).
However, the SA method tended to overestimate λET over
the arid/semiarid grasslands with σnorm>2, and is ranked
in the forth (after BMA, S–W and PT-JPL) in the overall
model performances. This suggested that SA merging
multiple model estimations does not necessarily yield
rational λET estimates, especially over the moisture-
limited land surface conditions.
Validation of BMA predictions using data from
independent periods

The previous sections show that the BMA scheme is a
promising tool for yielding proper λET estimations during
the training period. A natural question to ask is how the
BMA predictions perform when they are evaluated using
data from an independent validation period (2009). In this
section, we used the weights (wi) and bias correction
coefficients (ai and bi, i=1,⋯, 4) of each model obtained
from the training periods to compute BMA predictions for
Hydrol. Process. 30, 2861–2879 (2016)



Figure 3. Boxplots of Taylor skill (S) for half-hourly λET by (a) every
model over the selected 12 sites, and (b) each site represented by the
number in the bracket of the four models. Panels show interquartile range
(box), mean (square), median (solid line), range (whiskers), and outliers
(cross). CRO = cropland, ALG = alpine grassland, ARG= arid/semiarid

grassland. The site number is given in Table I

2870 G. ZHU ET AL.
the validation period. In term of performance statistics (i.
e. R2, RMSE, RE and NSE), the BMA predications in the
validation period was similar to that in the training period
(Supporting Information B), suggesting that the BMA
predictions were consistent over different periods.
Notably, the Taylor skill for BMA method (i.e. 0.83–
0.95) showed a relatively wider variation over different
sites than that for S–W (i.e. 0.87–0.95), and the mean
value of Taylor skill for BMA method (0.89) was slightly
lower than that for S–W (0.91) (Figure 6b). The results
indicated that the overall performance of the BMA
predictions in the validation period were not necessary
better than the best performing model (S–W) in the
ensemble. However, the advantage of using BMA method
was still obvious compared to the SA method and other
individual models (Figure 6b and Table S2 in Supporting
Information B).
Copyright © 2016 John Wiley & Sons, Ltd.
One feature of the BMA method is that it can derive
probabilistic ensemble predictions from competing
individual deterministic predictions (see details in
Supporting Information C). In this study, we generated
1000 BMA ensemble predictions to get a reasonable
empirical probability density function (PDF) at each time
step. Ideally, the spread of the ensemble predictions
should be as small as possible, but consistent with
observations, so that the predictive PDF is as sharp as
possible (Vrugt and Robinson, 2007). For each biome type,
two sites (where the mean Taylor skill value of models
was highest and lowest, respectively; Figure 2) were
selected to evaluate the precision of the BMA
probabilistic predications. Figure 7 presented the
excepted BMA predictions given by Equation 30 along
with the 95% confidence interval of the BMA ensemble
for a representative day in each month at the selected
sites. To put Figure 7 in a proper perspective, the
corresponding predictions derived from the SA method
and the best individual model were also shown. Over sites
where the mean Taylor skill value was highest for the
grass and crop ecosystems (i.e. Arou and Yingke), the
uncertainty bounds defined as the 95% confidence
intervals are sharp and consistent with the observations
(Figures 7a and 7c). Also, the excepted BMA predications
at each site were comparable with the best performing
model in the ensemble (i.e. PT-JPL and S–W at Arou and
Yingke, respectively). On the contrary, the uncertainty
ranges were clearly inconsistent with the observations (i.
e. significant overestimations) over sites where the mean
Taylor skill value was lowest for the grasslands and
croplands (i.e. Dongsu and Tongyu; Figures 7b and 7d),
and there is some degradation in performance of the
excepted BMA predications comparing to the best model
of the ensemble (S–W model). Thus, the skill and
performance of the individual members of the ensemble
ultimately determine the success of BMA-derived
predications. There is no guarantee that the BMA
deterministic predications were certainly superior to that
of the best model in the ensemble at particular sites.
DISCUSSION

Evaluation of the individual model performance

The A–A model requires only widely available
meteorological measurements to estimate actual ET
without detailed information about the surface
biophysical and hydrological states (Szilagyi and Jozsa,
2008). For this reason, there has been a renewed interest
among hydrologists in evaluating and testing the model
and its underlying assumptions (see details in Crago and
Qualls, 2013). In this study, we found that the A–A model
showed an overall low performance as indicated by
Hydrol. Process. 30, 2861–2879 (2016)



Figure 4. The relationship between the soil moisture regimes and corresponding evapotranspiration regimes of the grasslands in north China. EF denotes
the evapotranspiration fraction

Figure 5. The BMA weight computed over the entire training period (2008) across all sites in north China. The models that perform better receive higher
weights than that perform worse
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relatively large overestimation of half-hourly λET across
all tower sites (i.e. regression slope ≥1.09; Tables in
Supporting Information B). Similar model performance
has been reported by Ershadi et al. (2014), with slope
Copyright © 2016 John Wiley & Sons, Ltd.
≥1.05 for an average 5-year period using half-hourly or
hourly data in 20 FLUXNET sites over a wide range of
biomes. To get better match between observed and
estimated ET, some authors stated that the Priestley–
Hydrol. Process. 30, 2861–2879 (2016)



Figure 6. Performance of the four individual ET models for the 12 selected tower sites (number 1–12). (a) training period; (b) validation period. The
inserted plot was the Taylor skill (S) of model over the selected 12 sites for corresponding period. Data for Naiman (site no. 2), Maqu (no. 6) and

Guantao (no.10) was not available in 2009
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Taylor coefficient αPT (Hobbins et al., 2001; Xu and Singh,
2005; Szilagyi and Jozsa, 2008; Gao et al., 2011) or the
proportionality constant b (Kahler and Brutsaert, 2006;
Szilagyi, 2007; Szilagyi et al., 2009; Han et al., 2012)
Copyright © 2016 John Wiley & Sons, Ltd.
should be treated as parameters and need to be calibrated
over varying land states (e.g. soil moisture; Garcia et al.,
2009) and climate conditions (e.g. seasonality; Yang et al.,
2013). However, the calibration-free merit of the A–A
Hydrol. Process. 30, 2861–2879 (2016)



Figure 7. Expected BMA predictions and 95% confidence interval compared to observations at selected sites. (a) Arou, (b) Dongsu, (c) Yingke, and
(d) Tongyu
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model will ultimately be lost by doing so. For different
locations, we found that the prediction precision of the A–
A model over croplands (which is often associated with
high soil water availability because of irrigation) and two
alpine grasslands on Qinghai–Tibetan plateau were better
than that over the four soil moisture-limited grasslands in
north China (Figure 3 and Supporting Information B). The
results confirmed the conclusion of previous studies, which
showed that the predictive power of the A–A model
increases in moving toward regions of increased energy
control of ET rates (i.e. humid regions) and decreases in
moving toward regions of increased soil moisture control
(i.e. arid regions) (Lemeur and Zhang, 1990; Hobbins
et al., 2001; Xu and Li, 2003; Xu and Singh, 2005). Thus, it
may still be challenging for the A–A model to properly
descript the soil–moisture constraints on ET processes over
arid environments.
Despite of the common theoretical basis (i.e. the

Penman model; Penman, 1948), the P–M and S–W
models performed significantly different in our study.
Generally, the P–M model overestimated half-hourly λET
across all sites, especially over the four soil moisture-
limited grasslands (i.e. slope≥1.73; Tables in Supporting
Information B); the S–W model showed a satisfactory
accuracy in the estimation of half-hourly λET over all
sites. These results are in general agreement with some
previous studies. For example, Zhang et al. (2008)
compared the performance of the P–M and S–W models
with measured half-hourly λET over a vineyard located in
arid region of northwest China, and found the P–M model
overestimated λET significantly, while the estimated λET
Copyright © 2016 John Wiley & Sons, Ltd.
from the S–W model was approximately equal to the
measured λET. However, some studies reported that the
P–M and S–W models yielded similar results (Fisher
et al., 2005). Such difference in model performance may
be strongly related to the effects of soil moisture stress
and variations in LAI (Burba and Verma, 2005). In the
study of Fisher et al. (2005), the dense canopy
(LAI>2.9m2m�2) and high vegetation cover (more than
70%) of the conifer forest in Northern California resulted
in insignificant contribution of soil evaporation to the
total ET. Under such conditions, the S–W model
reduced back to the P–M model and gave similar
results. But in sparse canopies such as the soil moisture-
limited grasslands in this study, soil surface resistance
(about 1000 sm�1 for dry soil; Dorman and Sellers,
1989) was generally higher than the canopy resistance
(about 200–400 sm�1; Dorman and Sellers, 1989; Zhang
et al., 2008). Thus, the P–M model overestimates λET
because the canopy resistance in the model is lower than
the actual surface resistance, which is an integration of
canopy and soil surface resistances (Stannard, 1993).
Another possible explanation for the overestimation of
the P–M model might be related to model parameters (i.
e. rsmin). The value of rsmin used in this study was
relative smaller than some locally calibrated values of
previous studies. For example, Zhang et al. (2008)
reported the optimal value of rsmin for vineyard in
northwest China was 146 sm�1; rsmin was set to be
252 sm�1 for maize in North Italy (Gharsallah et al.,
2013). Although constant parameter values were used, the
S–W still performed best among the models, which indeed
Hydrol. Process. 30, 2861–2879 (2016)
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highlighted the import influence of model structure on
modelling ET (Ershadi et al., 2015). It can be expected
that the performance of the S–W model would further be
improved using locally calibrated parameters. This has
been confirmed by numerous studies (Stannard, 1993; Teh
et al., 2001; Zhang et al., 2008; Zhu et al., 2013, 2014b).
Thus, the models with ET partitioning structure (canopy
transpiration and soil evaporation) were highly
recommended for ET simulations especially in semiarid
and arid areas.
The PT-LPJ mode relies on atmospheric and

ecophysiological constraints to scale down the
Priestley–Taylor model (Priestley and Taylor, 1972).
Despite its simplicity (i.e. not requiring specification of
aerodynamic and surface resistances), the PT-JPL model
performed well in croplands and two alpine grasslands on
Qinghai–Tibetan plateau (Figure 2). Similar model
performance has been reported in previous studies (Fisher
et al., 2008, 2009; Vinukollu et al., 2011; Ershadi et al.,
2014). In this study, we found that the PT-JPL model
exhibited reduced performance over the four sparse and
soil moisture-limited grasslands in north China (i.e.
overestimation with slope ranging from 1.03 to 1.76;
Tables in Supporting Information B). This may be mainly
attributed to errors in the parameterization of soil
moisture constraint fSM (= RHD/β). Recently, García
et al. (2013) reported that the model using the original
parameterization of fSM (β=1 kPa) did not provide
meaningful λET estimation over the Mediterranean
g r a s s l a n d s ( i . e . R 2 ~ 0 . 1 6 a n d n e g a t i v e
bias ~�16.5Wm�2 which indicated an overestimation).
However, the model performance was significantly
improved (i.e. R2 = 0.53–0.64 and bias = 15–17Wm�2)
by setting β =0.1 kPa. Similar to works of García et al.
(2013), we also compared the model performance with
two different values of β across all sites during the whole
Table III. Evaluation of PT-JPL half-hourly λET with EC data for
performance i

S i te
No.

β = 1

R2 Slope Bias RMSE RE NSE

1 0.65 2.00 -2.2 71.9 1.36 -0.06
2 0.65 1.73 -14.2 53.1 2.01 -1.38
3 0.49 1.60 -6.55 61.1 2.2 -2.02
4 0.63 1.20 -0.74 65.8 1.32 0.06
5 0.84 0.96 22.6 52.1 0.63 0.79
6 0.80 0.89 16.7 49.8 0.59 0.78
7 0.69 1.20 -2.04 60.4 1.07 0.33
8 0.60 1.02 -10.6 89.6 1.13 0.29
9 0.67 0.95 -3.67 71.7 0.99 0.56
10 0.77 1.04 �4.45 54.1 0.76 0.69
11 0.81 0.83 33.7 79.9 0.66 0.76
12 0.65 0.66 39.1 87.7 0.81 0.56

Copyright © 2016 John Wiley & Sons, Ltd.
data available period (Table III). The PT-JPL model
performed better (i.e. slope closer to 1, smaller RMSE and
larger NSE) using β=0.1 kPa over the four soil moisture-
limited grasslands, while better results corresponding to
β=1 kPa were found over the alpine grasslands on
Qinghai–Tibetan plateau. Over the croplands, the
differences in model performance by using the two β
values were not significant. Thus, parameterization using
fSM should be tuned according to the conditions for
successful results (García et al., 2013). Until now, much
attention has been paid to properly parameterize fSM, such
as using Apparent Thermal Inertia (ATI) (García et al.,
2013; Yao et al., 2013) and in site measured volumetric
soil water content (García et al., 2013). In the future,
more works on the performance intercomparisons of
different fSM parameterizations across a wide range of
biomes in different climatic regions may be needed. In
addition, the uncertainty in remote sensing data (i.e.
NDVI) may also cause errors in λET estimation (Ershadi
et al., 2014).
Evaluation of the BMA method performance

Because of intrinsic uncertainty in model structure,
predictions from a single model often lead to over-
confidence and significant bias (Hoetting et al., 1999;
Raftery et al., 2003; Parrish et al., 2012). Multimodel
ensemble approaches have therefore become increasing
popular in climate change projections (Tebaldi et al.,
2006; Yang et al., 2012), land surface component
simulation (i.e. soil moisture, Guo et al., 2007; surface
longwave radiation, Wu et al., 2012), groundwater
assessment (Neuman, 2003), hydrologic streamflow
predictions (Duan et al., 2007; Vrugt and Robinson,
2007; Zhang et al., 2009), and terrestrial ET estimation
(Ershadi et al., 2014; Yao et al., 2014). With the
β = 1kPa and β = 0.1 kPa. The bold number represents the best
n each site

β = 0.1

R2 Slope Bias RMSE RE NSE

0.67 1.32 3.13 56.9 1.25 0.04
0.65 1.63 �7.05 47.0 1.80 �0.84
0.51 1.16 1.76 40.5 1.43 �0.30
0.65 0.99 9.68 44.5 0.99 0.46
0.86 0.88 29.9 51.1 0.66 0.78
0.80 0.79 24.6 51.6 0.64 0.74
0.63 0.86 12.3 50.7 0.9 0.52
0.67 1.14 -16.3 78.1 1.20 0.31
0.69 0.91 1.66 71.2 0.90 0.61
0.75 1.01 -5.25 57.5 0.86 0.66
0.85 0.88 28.0 63.0 0.60 0.81
0.70 0.62 44.5 84.7 0.81 0.57
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ensemble techniques, the SA approach focused on point
predictions, while the BMA approach was mainly
concerned with producing bias-corrected probabilistic
forecasts (Diks and Vrugt, 2010). Various case studies
have shown that the BMA approach can produce more
accurate and reliable predictions than the SA method
(Barnston et al., 2003; Vrugt et al., 2008). Here, we also
found that the BMA approach in performances was
superior to the SA approach both in the training and
validation periods. For example, the average RMSE over
all sites is 55.6Wm�2 and NSE=0.62 for the BMA
approach, while the average RMSE is 79.7Wm�2 and
NSE=�0.19 for the SA approach (Tables in Supporting
Information B). This may because the BMA considers a
weighted average of ensemble distribution that is centred
on the bias-corrected individual forecasts with data over
a training period, whereas the SA method directly
averages individual forecasts without using any auxiliary
data (Raftery et al., 2003). Recently, Yao et al. (2014)
showed that the BMA approach by merging five
satellite-based ET algorithms yielded better ET results
compared to the SA approach. Noticeably, the SA
approach in this study overestimated λET in most cases
and ranked fourth (after BMA, S–W and PT-LPJ) in
overall model performances. This was different from the
results of Ershadi et al. (2014), who reported that SA of
four ET models produced the best λET estimations over
20 FLUXNET sites. Thus, the performance of the SA
approach seems to vary over different biomes and
climatic conditions.
Figure 8. Histograms depicting the frequency distribution of the departures b
P–M, (b) S–W, (c) PT

Copyright © 2016 John Wiley & Sons, Ltd.
Successful implementation of BMA needs proper
estimates of its related parameters (i.e. wi, σi, ai, and bi)
of the individual models in the ensemble (Vrugt et al.,
2008; Sloughter et al., 2010). In our implementation,
these parameters were fitted from a given training period
(2008) and assumed to be static over calibration period
(2009). It was found that the BMA method overall
performed best during the training period (Figure 6a).
Recently, Chen et al. (2015) also illustrated that the BMA
method can outperform the best of eight satellite-based
ET models in China. However, some degradation in
BMA performance was observed during the calibration
period, and its predication skill at some sites (i.e. Dongsu,
Tongyu, Yuzhong) was equal to or not better than the best
performing model (S–W) in the ensemble (Figure 6b).
Thus, the essential avenue in obtaining reliable large scale
ET estimation still greatly depends on the developments
of physically-based accurate and applicable ET models
(Wang and Dickinson, 2012). This finding is consistent
with results from previous studies (Pavan and Doblas-
Reyes 2000; Palmer et al. 2000; Peng et al. 2002;
Barnston et al., 2003; Georgekakos et al., 2004; Vrugt
et al., 2008; Zhang et al., 2009). The degradation in BMA
performance may be attributed to the following reasons.
First, the static assumption of the BMA parameters may
not be true in real world. In this study, we found that the
regression relationship between observed and simulated
λET of each model was generally different in the two
years (Tables in Supporting Information B). Thus, the
static coefficients (ai and bi) may produce biassed
etween observed and bias-corrected simulations for the four ET models. (a)
-JPL, and (d) A–A
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predictions in the validation period. To date, various
adaptations of BMA have been proposed to solve this
problem. For example, Raftery et al. (2005) used the
sliding window technique to obtain unbiassed forecasts.
That is, the training period is limited to a shorter sliding
window surrounding the forecast, and each forecast is
based on the dynamically updated parameters. Hsu et al.
(2009) proposed the use of sequential Bayesian approach
for recursively adjusting the BMA parameters. These
approaches may provide better forecasts for state-space
models. However, the majority of ET algorithms do not
belong to these type models, which makes these
approaches unsuitable for λET estimation. Thus, a
feasible solution to this problem is to split the training
period into different intervals according to growing
seasons (i.e. LAI and land cover fraction), and compute
separate BMA parameters for each interval. This is the
scope of our future work.
Second, the conditional density function pi(y|fi,D) is

widely recognized to have significant influences on the
performance of the BMA approach (Raftery et al., 2005;
Vrugt et al., 2008; Duan and Phillips, 2010; Yao et al.,
2014). Generally, normal density works well for weather
quantities such as temperature, sea-level pressure (Raftery
et al., 2005; Vrugt et al., 2008; Miao et al., 2013),
shortwave and longwave radiation (Wu et al., 2012), and
Gamma distribution provides good fits to precipitation
products (Vrugt et al., 2008; Sloughter et al., 2010; Yang
et al., 2012). As λET is a variable that links energy, water,
and plant productivity, a priori assessment of the
conditional density for the BMA method may be difficult
(Zhu et al., 2014b; Yao et al., 2014). Figure 8 showed the
distribution of the departures of bias-corrected
simulations and observations of half-hourly λET, which
were approximated better by the double-exponential and
Cauchy PDFs. These results were in agreement with
previous studies (Richardson et al., 2006; Zhu et al.,
2014b). However, the Cauchy distribution may not be
appropriate for model-data fusion, because its first four
moments are undefined (Richardson et al., 2008).
Third, the performances of individual models have

significant impacts on the accuracy of the BMA approach (
Figure 7). In this study, fixed parameters were used for
specified land cover types without considering the
parameter variations over different land surface conditions
and plant growing seasons. Bonan et al. (2012) and Chen
et al. (2013) pointed out that uncertainties in model
estimates were because of parameter errors are equivalent
to those from different model structures. Our previous
study also showed that the seasonal variations in
parameters have significant impacts on long-term ET
simulations (Zhu et al., 2013). Unfortunately, a proper data
set of model parameters for different land cover types and
climate spaces is not available at present. To improve the
Copyright © 2016 John Wiley & Sons, Ltd.
accuracy of ET estimates at large scales, it is therefore
urgently needed to calibrate the ET models using the data
from FLUXNET sites over a wide range of biomes and
climatic conditions. In addition, the accuracy of EC
observations may have influences on the BMA
performances because EC observations were assumed as
true values in calculating the BMA parameters of
individual ET models. Recently, Wang et al. (2014)
systemically studied the flux uncertainties of EC systems
equipped in the some CEOP sites, and reported that the
uncertainties for λET were about 13%. However,
measurement uncertainty was not explicitly accounted in
present work. Thus, an integrated BMA framework that
accounts for the parameter and measurement uncertainties
is needed to improve the accuracy of long-term global
terrestrial ET estimates (Ajami et al., 2007).
CONCLUSIONS

In this study, four ET models and the multi-model
ensemble approaches (i.e. SA and BMA) were evaluated
at half-hourly time steps over 12 flux tower sites in north
China. Although the focus of this paper was on evaluating
the performances of the selected ET models at the tower
scale, the results would be helpful in identifying proper
models for generating robust regional or global ET
products. When using tower-based forcing data, the S–W
model, followed by the PT-JPL model, outperformed the
single-source P–M model and the A–A model. Thus, the
models with ET partitioning (i.e. soil evaporation and plant
transpiration) structure were recommended for large scale
or global ET simulations. However, some crucial variables
(i.e. soil water content, vegetation cover and plant root
depth) in controlling the ET process in water-limited areas
are still unavailable at the regional or global scale. In the
future, efforts by integrating in-situmeasurements, satellite
observations and data assimilation technique should been
done to improve the estimations of these variables in semi-
arid and arid areas. As far as the multi-model ensemble
approaches were concerned, the BMA method yielded
better performance than the SA method. During the
validation period, there was some degradation of the
BMA approach, which may be attributed to the improper
assumption of static BMA parameters. Thus, it is still
necessary to explore the seasonal variations of the BMA
parameters according the different growth stages. Finally,
the double-exponential probability distribution may be
appropriate in the half-hourly λET context.
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